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We investigate the onset of the Faraday instability in a vertically vibrated wormlike micelle solution. In this
strongly viscoelastic fluid, the critical acceleration and wave number are shown to present oscillations as a
function of driving frequency and fluid height. This effect, unseen in either in simple fluids or in previous
experiments on polymeric fluids, is interpreted in terms of standing elastic waves between the disturbed surface
and the container bottom. It is shown that the model of KumarfPhys. Rev. E65, 026305s2002dg for a
viscoelastic fluid accounts qualitatively for our experimental observations. Explanations for quantitative dis-
crepancies are proposed, such as the influence of the nonlinear rheological behavior of this complex fluid.
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Since Faraday’s founding workf1g, the parametric insta-
bility of a vertically vibrated fluid layer has emerged as one
of the best candidates to study pattern formation and nonlin-
ear dynamics. Above a critical accelerationac, an initially
flat and quiescent fluid layer driven vertically at frequencyf
goes unstable and gives way to a pattern of surface waves
that oscillates at half the driving frequency with a character-
istic wave numberkc f1–3g. As the driving acceleration is
raised above onset, a series of secondary instabilities takes
place, leading to defect dynamics and eventually to spa-
tiotemporal chaosf4g.

So far, the Faraday instability has been mostly studied in
simpleviscous fluidsf1–6g. Recently, interest has grown in
the effect of vertical vibrations on a layer ofcomplexfluid,
both experimentallyf7,8g and theoreticallyf9,10g. Due to
their microstructure, complex fluids display viscoelastic
properties, which may affect classical hydrodynamic insta-
bilities f11g. However, previous experiments on semidilute
polymeric solutions did not show significant modifications of
the Faraday instabilityf7,8g. The debate has mainly focused
on the existence of a harmonic responsesat fd instead of the
classical subharmonic responsesat f /2d, a typical viscoelas-
tic effect predicted numericallyf9,10g and observed experi-
mentally at rather low frequenciessf ,40 Hzd, together with
new types of patterns that compete with each otherf8g.

In this paper, we report onset measurements of the Fara-
day instability in a wormlike micelle solution, a strongly
viscoelastic fluid well characterized by a single relaxation
time t. The critical acceleration and wave number are shown
to presentoscillationsas a function of driving frequencyssee
Fig. 1d. This effect is interpreted in terms of standing elastic
waves between the disturbed surface and the container bot-
tom. It is also shown that the finite-depth model of Ref.f9g
accounts qualitatively for these experimental observations.
Finally, possible explanations for discrepancies are discussed
and the implications of our results in the field of complex
fluid hydrodynamics are emphasized.

Wormlike micelles salso called “living polymers”d are

long, cylindrical aggregates of surfactant molecules in solu-
tion f11g. They spontaneously form under given conditions
of temperature and concentration for a wide range of surfac-
tants. Unlike conventional polymers, their size is not fixed
and they constantly break and recombine under thermal agi-
tation. Their dynamics thus result from both a classical rep-
tation motion f12g and breaking-recombination processes
f13g. This peculiar feature leads to an almost perfect Max-
wellian behavior in the small-deformation regime, for which
the complex viscosity readshMsvd=G0t / s1+ivtd, whereG0

is the shear modulus,t the relaxation time, andv the pulsa-
tion.

Our working fluid is a wormlike micelle system made of
cetylpyridinium chloridesCPCl, from Aldrichd and sodium
salicylatesNaSal, from Acros Organicsd dissolved in brine
s0.5 mol NaCld f14,15g. In this study, we focus on a 4 wt %
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FIG. 1. sad Critical accelerationac andsbd critical wave number
kc vs driving frequency in a 4 wt %CPCl/NaSal wormlike micelle
solutionsPd. Also shown are the calculations for the corresponding
Maxwell fluid sdotted linesd and when adding a Zimm-like term
ssolid linesd. Insets:ac andkc for a Newtonian fluids78% glycerol–
22% water mixtured and corresponding predictions using the model
of Ref. f6g with densityr=1.19 g cm−3, viscosityh=0.05 Pa s, and
surface tensions=0.06 N m−1 ssolid linesd.
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sample with a concentration ratiofNaSalg / fCPClg=0.5 as
described in Ref.f15g. Linear rheological measurements
were performed in the cone-and-plate geometry using a
stress-controlled rheometersAR 2000N, TA Instrumentsd
with small stress oscillations of amplitude 2 Pasthe linear
regime extends up to 20 Pad. As shown in Fig. 2, the dy-
namic moduli are well accounted for by a Maxwell model
G8svd=−v ImfhMsvdg and G9svd=vhs+v RefhMsvdg,
with G0=16 Pa andt=0.44, s at least for frequencies below
2 Hz. hs=10−3 Pa s represents the solventsbrined contribu-
tion to the viscosity.

Our experimental setup is a classical one for studying the
Faraday instability. A cylindrical container of inner diameter
60 mm is filled to a height under the brimful boundary con-
dition f5g and vertically vibrated using an electromagnetic
shakersLing Dynamic Systems V406d. The fluid temperature
is regulated to 216 0.05 °C by water circulation beneath the
container. In order to prevent evaporation and surface con-
tamination, the container is sealed by a Plexiglas cover that
supports a small piezoelectric accelerometersEndevco
2224Cd. The signal from the accelerometer is fed to a lock-in
amplifier sStanford Research Systems SR810d that provides
the sinusoidal excitation at frequencyf to the shaker. The
experiment is illuminated from above by a circle of diodes
strobed atf or f /2. The bottom of the container is made of
aluminum to provide mechanical rigidity, and anodized to
prevent light reflection.

For a given driving frequency, the instability threshold is
determined bysid noting the acceleration for which the insta-
bility first appears,sii d fully destabilizing the whole surface
by increasing the acceleration about 5% above onset, and
siii d decreasing the acceleration and noting the acceleration
for which the instability completely disappears. In all cases,
the two values of the critical acceleration differ by less than
2%: no significant hysteresis is observed. The value ofac
shown in Fig. 1sad is the mean of these two accelerations,
their difference remaining always smaller than the marker
size. Moreover, the surface response was found to besubhar-
monicsat f /2d over the whole range of investigated frequen-
cies f =25−90 Hz. For each frequency, the critical wave
numberkc is estimated from a picture of the fully destabi-
lized surface.

Figure 1 constitutes our main result. The critical accelera-
tion and wave number are not monotonic but rather oscillate
with the frequency, a maximum inac corresponding to a
large drop ofkc. To our knowledge, such a marked effect has
not been reported in previous experiments on complex fluids.
In Newtonian fluids, nonmonotonicac or kc is associated
with lateral boundary effectssas only an integer or semi-
integer number of wavelengths may fit in the cell when the
brimful condition is usedd f5,16g. In order to rule out such an
interpretation, we repeated the experiment with a Newtonian
fluid of critical acceleration and wave number similar to our
wormlike micelle solution. The insets in Fig. 1 show mono-
tonic behaviors, in perfect agreement with the model of Ref.
f6g for a laterally unbounded viscous fluid, as already found
in other Newtonian fluidsf5g. This allows us to consider our
results in terms of a laterally unbounded fluid and confirms
the viscoelastic nature of the oscillations seen inac andkc for
the wormlike micelles.

More precisely, we propose to interpret these oscillations
as a coupling between the disturbed surface and elastic
waves reflected at the container bottom. For a Maxwell fluid
in the vt@1 limit, which is always verified in our experi-
ments, the velocityc and attenuation coefficienta of shear
waves are given byc=ÎG0/r anda=1/s2ctd, wherer is the
fluid density. Above onset, surface disturbances generate
elastic waves that may form a standing wave in the container
height h. When 2h is a semi-integer multiple of the wave-
length 2c/ f f17g—i.e., f =sn+1/2df1 with f1=ÎG0/r /h and
n an integer—constructive interferences form at the surface.
In this case, elastic waves are amplified and surface distur-
bances are promoted so that the critical acceleration is ex-
pected to be lower than in the absence of elastic effects. On
the other hand, whenf =nf1, destructive interferences should
lead to an increase ofac, hence the oscillations of Fig. 1sad.
Moreover, at each maximum ofac, the number of elastic
modes in the vertical direction increases. Since the vertical
wave number is linked to the horizontal one through the
incompressibility conditionf6,9g, jumps similar to those of
Fig. 1sbd are expected even in a laterally unbounded fluid.

In order to further check the above interpretation, we per-
formed the finite-depth numerical calculations of Ref.f9g for
a Maxwell fluid with the rheological parameters inferred
from Fig. 2. The two remaining parameters used in the
calculations—namely, the density and surface tension of the
fluid—were measured independently, yieldingr
=1.0 g cm−3 ands=0.03 N m−1, respectively. By varyingh
sG0, respectivelyd for a fixedG0 sh, respectivelyd, we show
in Fig. 3 that large oscillations also show up numerically.
Moreover, they perfectly agree with the simple relationfn

=nÎG0/r /h suggested above. The interpretation in terms of
elastic waves reflected at the container bottom is thus con-
firmed. Thisfinite-depthviscoelastic effect went unseen in
previous numerical studies that focused on the question of
harmonic vs subharmonic responsef9,10g.

Note, however, that these numerical calculations based on
the Maxwell model do not allow any quantitative compari-
son with the experimentalac andkc ssee dotted lines in Fig.
1d. This is most probably because our fluid does not remain
purely Maxwellian at frequencies higher than 2 Hz. Indeed,
although our rheological measurements are limited to 10 Hz,

FIG. 2. Storage modulusG8 svd ssd and loss modulus
G9svdsPd as a function of oscillation frequencyv /2p for a stress
amplitude of 2 Pa. The dotted line is the best Maxwell fitsG0=16
Pa andt=0.44 sd with a solvent viscosityhs=10−3 Pa s. The solid
line corresponds to the same Maxwell model with an added Zimm-
like term ssee textd.
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an upturn ofG9svd is clearly visible on the data of Fig. 2.
Such an upturn is usually attributed to the presence of
Rouse-like or Zimm-like motion at high frequenciesf12,18g.
If we model this behavior by adding a Zimm relaxation term
to the previous Maxwell model,

hsvd = hs +
G0t

1 + ivt
+ aZS1 −

i
Î3

Dv−1/3 , s1d

a very good fit of bothG8svd and G9svd is obtained with
aZ=0.12 Pa s2/3 ssee solid lines in Fig. 2d.

Using Eq.s1d in the numerical calculations leads to com-
puted curvessshown as solid lines in Fig. 1d that are much
closer to the experimental measurements, although the at-
tenuation of the oscillations with increasing frequency is
now too strongssee discussion belowd.

Finally, both our simple analysis and the numerical results
of Fig. 3sad predict thatac andkc should oscillate when the
fluid heighth is varied at a fixed frequency. Figure 4 shows
that such oscillations indeed take place in the experiment and
that the Maxwell model corrected by a Zimm-like term pro-
vides a good description ofac. Again, these findings are

strikingly different from the monotonic decay ofac vs h in
Newtonian fluidsf5g.

Let us now discuss the present experimental and numeri-
cal results. Previous experiments on polymeric solutions did
not show any oscillations in the onset measurementsf7,8g.
This can be explained by considering the attenuation coeffi-
cient of the elastic wavesa. If a.1/h, no standing wave—
and thus no oscillation—is observed due to a too strong at-
tenuation. In our wormlike micelle solution, the storage
modulusG8svd remains always at least 3 times larger than
the loss modulusG9svd and ah.0.09, so that oscillations
are observed, whereas previous experiments were performed
either in the capillary regimef7g or in the overdamped re-
gime f8g where elastic waves may not be excitedf19g.

Moreover, even though the oscillations inac are rather
well reproduced by the Maxwell model with a Zimm correc-
tion, the agreement with the experimental values ofkc re-
mains only qualitativefsee Figs. 1sbd and 4sbdg. A Rouse
correction was also tried with similar results. It may be ar-
gued that the discrepancy is due to an inadequate rheological
model. Indeed, standard rheometers are limited to about 15
Hz, so that rheological data had to be extrapolated to higher
frequenciesf7,8g.

However, we believe that the lack of agreement points to
more fundamental questions about the validity of the numeri-
cal approach. Indeed, besides lateral finite-size effects, which
we ruled out at the beginning of this study, at least two
important physical effects are not taken into account in the
model of Ref.f9g: interfacial rheology and nonlinear bulk
rheology.

First, in the numerical calculations, the air–fluid interface
is modeled as purely elastic with surface tensions, whereas
in a complex fluid,s can depend on the frequency. More
importantly, theinterfacial viscoelasticitymay significantly
affect the boundary conditionsf20g.

Second, the model of Ref.f9g relies on linear viscoelas-
ticity. Indeed, since the instability occurs from a quiescent
state, strain is expected to be “small.” Experimentally, the
smallest detectable surface deformation isz.10 mm. The
corresponding strain rateġ may be estimated byġ,zvk
.10 s−1 at f =60 Hz f9g. Since the zero-shear viscosity of
our fluid is h0=G0t.7 Pa s,ġ.10 s−1 corresponds to a
shear stress of about 70 Pa, which is far into thenonlinear
regime. Thus, the only knowledge of the linear viscoelastic
moduli G8 andG9 may not be sufficient to fully account for
the experiments and nonlinear effects could provide an ex-
planation for the observed discrepancies.

More precisely, wormlike micelles are known to align un-
der shear, leading to a shear-induced nematic statef11g. This
strongly shear-thinning isotropic-to-nematic transition oc-
curs for ġ.0.5−50 s−1 depending on temperature and con-
centrationf15g. In a Faraday wave pattern, shear is localized
between the crests and the troughs. Thus, above onset,
aligned micelles are expected to coexist with the isotropic
state and to spatially mimic the surface pattern. Finally, since
the destabilized state is far from a pure shear flow, one may
also wonder about the influence of nonlinearextensionalrhe-
ology.

To conclude, the present study reveals a strong signature
of elasticity on the onset of the Faraday instability in a

FIG. 3. Numerical calculations using the model of Ref.f9g with
t=0.44 s,r=1.0 g cm−3, and s=0.03 N m−1. sad ac vs h and f at
fixed G0=16 Pa.sbd ac vs G0 and f at fixedh=10 mm. White dots

are the linesfn=nÎG0/r /h with n=5 and 7 and coincide with
maxima ofac.

FIG. 4. sad Critical accelerationac andsbd critical wave number
kc vs fluid height measured at 50 Hzshd and at 70 HzsPd. The
solid lines correspond to the Maxwell model with an added Zimm-
like term ssee textd.
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wormlike micelle solution. This original effect results from
standing elastic waves in the container height and should be
very general in highly viscoelastic fluids. It shows that, as
suggested earlierf8,9g, the characteristic relaxation time of a
complex fluid may couple to the excitation period and/or to
memory effects, leading to new temporal and spatial behav-
iors under vertical vibrations. Linear viscoelasticity allows
for a good qualitative agreement with the model of Ref.f9g
but we believe that surface rheology and/or nonlinear effects
are also significant. This raises new challenges for theory and
modeling of hydrodynamic instabilities in complex fluids. In
particular, we point out that the presence of a shear-induced
isotropic-to-nematic transition could play a major role in the
pattern selection. This last remark has to be related to some

very recent experimental findings on vertically vibrated
shear-thickening suspensions, where a rich variety of pat-
terns such as holes and fingers was observed after a finite
perturbation was applied to the surfacef21g. Such an unusual
behavior was linked to the nonlinear rheological properties
of the fluid. Our results on wormlike micelles provide an-
other example of a striking effect induced by the microstruc-
ture of a complex fluid on a classical instability.

The authors wish to thank A. Colin, F. Molino, G.
Ovarlez, and R. Wunenburger for fruitful discussions and the
“Cellule Instrumentation” of CRPP for technical advice and
design of the experiment.
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