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Signature of elasticity in the Faraday instability
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We investigate the onset of the Faraday instability in a vertically vibrated wormlike micelle solution. In this
strongly viscoelastic fluid, the critical acceleration and wave number are shown to present oscillations as a
function of driving frequency and fluid height. This effect, unseen in either in simple fluids or in previous
experiments on polymeric fluids, is interpreted in terms of standing elastic waves between the disturbed surface
and the container bottom. It is shown that the model of Kufidrys. Rev. E65, 026305(2002] for a
viscoelastic fluid accounts qualitatively for our experimental observations. Explanations for quantitative dis-
crepancies are proposed, such as the influence of the nonlinear rheological behavior of this complex fluid.
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Since Faraday’s founding woifd], the parametric insta- long, cylindrical aggregates of surfactant molecules in solu-
bility of a vertically vibrated fluid layer has emerged as onetion [11]. They spontaneously form under given conditions
of the best candidates to study pattern formation and nonlinef temperature and concentration for a wide range of surfac-
ear dynamics. Above a critical acceleratiay an initially  tants. Unlike conventional polymers, their size is not fixed
flat and quiescent fluid layer driven vertically at frequericy and they constantly break and recombine under thermal agi-
goes unstable and gives way to a pattern of surface wavagtion. Their dynamics thus result from both a classical rep-
that oscillates at half the driving frequency with a charactertation motion [12] and breaking-recombination processes
istic wave numbeik; [1-3]. As the driving acceleration is [13]. This peculiar feature leads to an almost perfect Max-
raised above onset, a series of secondary instabilities takgellian behavior in the small-deformation regime, for which
place, leading to defect dynamics and eventually to spathe complex viscosity readgy(w)=Gqr/ (1 +iw7), whereG,
tiotemporal chao$4]. is the shear modulus; the relaxation time, and the pulsa-

So far, the Faraday instability has been mostly studied iRjgn.
simpleviscous fluids{1-6]. Recently, interest has grown in Qur working fluid is a wormlike micelle system made of
the effect of vertical vibrations on a layer obmplexfluid,  cetylpyridinium chloride(CPCI, from Aldrich and sodium
both experimentally{7,8] and theoretically{9,10]. Due to  ggjicylate (NaSal, from Acros Organig¢sdissolved in brine
their microstructure, complex fluids display viscoelasti0(0_5 mol NaCJ [14,15. In this study, we focus on a 4 wt %

properties, which may affect classical hydrodynamic insta-
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the Faraday instability7,8]. The debate has mainly focused T
on the existence of a harmonic respofaef) instead of the E
classical subharmonic respon@ f/2), a typical viscoelas- s
tic effect predicted numericall{9,10] and observed experi-

polymeric solutions did not show significant modifications of

mentally at rather low frequenciés<40 Hz), together with 20
new types of patterns that compete with each ofBér ® . . .
In this paper, we report onset measurements of the Fara- 1000 - _,e;%}?

day instability in a wormlike micelle solution, a strongly
viscoelastic fluid well characterized by a single relaxation
time 7. The critical acceleration and wave number are shown
to presenbscillationsas a function of driving frequendgee
Fig. 1). This effect is interpreted in terms of standing elastic

100
waves between the disturbed surface and the container bot- Lool _ R
tom. It is also shown that the finite-depth model of Héf. 30 45 60 75 90
accounts qualitatively for these experimental observations. f(Hz)

Finally, possible explanations for discrepancies are discussed
and the implications of our results in the field of complex
fluid hydrodynamics are emphasized.

Wormlike micelles (also called “living polymers)’ are

FIG. 1. (a) Critical acceleratiora. and(b) critical wave number
k. vs driving frequencyn a 4 wt %CPCIl/NaSal wormlike micelle
solution(®). Also shown are the calculations for the corresponding
Maxwell fluid (dotted line$ and when adding a Zimm-like term
(solid lines. Insets:a. andk. for a Newtonian fluid 78% glycerol—
22% water mixturgand corresponding predictions using the model
*Corresponding author. Electronic address: ballestta@crppef Ref.[6] with densityp=1.19 g cm?, viscosity =0.05 Pa s, and
bordeaux.cnrs.fr surface tensiowr=0.06 N n? (solid lines.
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Figure 1 constitutes our main result. The critical accelera-
tion and wave number are not monotonic but rather oscillate
with the frequency, a maximum ia. corresponding to a
large drop ofk.. To our knowledge, such a marked effect has
not been reported in previous experiments on complex fluids.
In Newtonian fluids, nonmonotonie. or k. is associated
with lateral boundary effect§as only an integer or semi-
integer number of wavelengths may fit in the cell when the

. 2 brimful condition is usef[5,16]. In order to rule out such an
10 10 . . ; . :
©/27 (Hz) interpretation, we repeated the experiment with a Newtonian
fluid of critical acceleration and wave number similar to our

FIG. 2. Storage modulusG’ (w) (O) and loss modulus Wormlike micelle solution. The insets in Fig. 1 show mono-
G"(w)(®) as a function of oscillation frequenay/ 2 for a stress ~ tonic behaviors, in perfect agreement with the model of Ref.
amplitude of 2 Pa. The dotted line is the best Maxwel(®@=16 [6] for a laterally unbounded viscous fluid, as already found
Pa andr=0.44 9 with a solvent viscosityys= 103 Pas. The solid in other Newtonian ﬂU|d$5:| This allows us to consider our
line corresponds to the same Maxwell model with an added zimmYesults in terms of a laterally unbounded fluid and confirms

10°

like term (see text the viscoelastic nature of the oscillations seea.iandk for
the wormlike micelles.
sample with a concentration ratidNaSal/[CPCl|=0.5 as More precisely, we propose to interpret these oscillations

described in Ref[15]. Linear rheological measurements as a coupling between the disturbed surface and elastic
were performed in the cone-and-plate geometry using avaves reflected at the container bottom. For a Maxwell fluid
stress-controlled rheometd AR 2000N, TA Instrumenjs in the w7>1 limit, which is always verified in our experi-
with small stress oscillations of amplitude 2 Rbe linear ~ments, the velocityc and attenuation coefficient of shear
regime extends up to 20 PaAs shown in Fig. 2, the dy- waves are given bg=vGgy/p anda=1/(2c7), wherep is the
namic moduli are well accounted for by a Maxwell model fluid density. Above onset, surface disturbances generate
G'(w)=—w Im[py(w)] and G"(w)=wn+ow R py(w)], elastic waves that may form a standing wave in the container
with Gy=16 Pa andr=0.44, s at least for frequencies below heighth. When 21 is a semi-integer multiple of the wave-
2 Hz. =107 Pa s represents the solvebtine) contribu- length Z/f [17]—i.e., f=(n+1/2)f, with f;=\Gy/p/h and
tion to the viscosity. n an integer—constructive interferences form at the surface.

Our experimental setup is a classical one for studying thén this case, elastic waves are amplified and surface distur-
Faraday instability. A cylindrical container of inner diameter bances are promoted so that the critical acceleration is ex-
60 mm is filled to a height under the brimful boundary con-pected to be lower than in the absence of elastic effects. On
dition [5] and vertically vibrated using an electromagneticthe other hand, whefi=nf,, destructive interferences should
shaker(Ling Dynamic Systems V40Q6The fluid temperature lead to an increase @k, hence the oscillations of Fig(d).
is regulated to 21 0.05 °C by water circulation beneath the Moreover, at each maximum af;, the number of elastic
container. In order to prevent evaporation and surface commodes in the vertical direction increases. Since the vertical
tamination, the container is sealed by a Plexiglas cover thattave number is linked to the horizontal one through the
supports a small piezoelectric acceleromet@&@ndevco incompressibility conditiof6,9], jumps similar to those of
2224Q. The signal from the accelerometer is fed to a lock-inFig. 1(b) are expected even in a laterally unbounded fluid.
amplifier (Stanford Research Systems SRBfltat provides In order to further check the above interpretation, we per-
the sinusoidal excitation at frequenéyto the shaker. The formed the finite-depth numerical calculations of Réf.for
experiment is illuminated from above by a circle of diodesa Maxwell fluid with the rheological parameters inferred
strobed atf or f/2. The bottom of the container is made of from Fig. 2. The two remaining parameters used in the
aluminum to provide mechanical rigidity, and anodized tocalculations—namely, the density and surface tension of the
prevent light reflection. fluid—were  measured independently, vyieldingp

For a given driving frequency, the instability threshold is=1.0 g cm?® and ¢=0.03 N nT%, respectively. By varyind
determined byi) noting the acceleration for which the insta- (G, respectively for a fixed G, (h, respectively, we show
bility first appears(ii) fully destabilizing the whole surface in Fig. 3 that large oscillations also show up numerically.
by increasing the acceleration about 5% above onset, andoreover, they perfectly agree with the simple relatign
(iii ) decreasing the acceleration and noting the accelerationan\Gy/p/h suggested above. The interpretation in terms of
for which the instability completely disappears. In all casesglastic waves reflected at the container bottom is thus con-
the two values of the critical acceleration differ by less thanfirmed. Thisfinite-depthviscoelastic effect went unseen in
2%: no significant hysteresis is observed. The valuaof previous numerical studies that focused on the question of
shown in Fig. 1a) is the mean of these two accelerations, harmonic vs subharmonic respori€e10].
their difference remaining always smaller than the marker Note, however, that these numerical calculations based on
size. Moreover, the surface response was found subkar-  the Maxwell model do not allow any quantitative compari-
monic(at f/2) over the whole range of investigated frequen-son with the experimental. andk; (see dotted lines in Fig.
cies f=25-90 Hz. For each frequency, the critical wave1). This is most probably because our fluid does not remain
numberk; is estimated from a picture of the fully destabi- purely Maxwellian at frequencies higher than 2 Hz. Indeed,
lized surface. although our rheological measurements are limited to 10 Hz,
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a (ms™) strikingly different from the monotonic decay @f vs h in
Newtonian fluidg5].

Let us now discuss the present experimental and numeri-
cal results. Previous experiments on polymeric solutions did
not show any oscillations in the onset measuremgnig).

This can be explained by considering the attenuation coeffi-

cient of the elastic waves. If a>1/h, no standing wave—

150 and thus no oscillation—is observed due to a too strong at-
tenuation. In our wormlike micelle solution, the storage

FIG. 3. Numerical calculations using the model of H&fwith ~ MOodulusG’(w) remains always at least 3 times larger than
r=0.44,p=1.0gcm3 ando=0.03N L. (@ a, vs h andf at  the loss moduluss”(w) and h=0.09, so that oscillations
fixed Gy=16 Pa.(b) a. vs G, andf at fixedh=10 mm. White dots ~ are observed, whereas previous experiments were performed
either in the capillary regimg7] or in the overdamped re-
gime [8] where elastic waves may not be excitdd)].

Moreover, even though the oscillations & are rather
) o ) well reproduced by the Maxwell model with a Zimm correc-
an upturn ofG"(w) is clearly visible on the data of Fig. 2. {jon, the agreement with the experimental valueskofe-
Such an upturn is usually attributed to the presence ofnains only qualitativesee Figs. (b) and 4b)]. A Rouse
Rouse-like or Zimm-like motion at high frequencig®,18.  correction was also tried with similar results. It may be ar-
If we model this behavior by adding a Zimm relaxation termgued that the discrepancy is due to an inadequate rheological

8 & 8

£ l_11)100

are the linesf,=nVGy/p/h with n=5 and 7 and coincide with
maxima ofa..

to the previous Maxwell model, model. Indeed, standard rheometers are limited to about 15
Gyr i Hz, so that rheological data had to be extrapolated to higher

pw)=pe+ —— + az(l - —/—>w_1/3 , (1)  frequencieg7,8].
l+ioT V3 However, we believe that the lack of agreement points to

more fundamental questions about the validity of the numeri-
cal approach. Indeed, besides lateral finite-size effects, which
_we ruled out at the beginning of this study, at least two

puted curvegshown as solid lines in Fig.)that are much important physical effects are not taken into account in the

closer to the experimental measurements, although the afi0de! of Ref.[9]: interfacial rheology and nonlinear bulk

tenuation of the oscillations with increasing frequency is’ eqlogy_. . . . L
now too strong(see discussion below First, in the numerical calculations, the air—fluid interface

Finally, both our simple analysis and the numerical resultd> modeled as purely elastic with surface tensiowhereas

of Fig. 3(@) predict thata, andk, should oscillate when the " & complex fluid,o can depend on the frequency. More
fluid heighth is varied at a fixed frequency. Figure 4 ShOWS|mportantly, theinterfacial viscoelasticitymay significantly

that such oscillations indeed take place in the experiment anﬁfrect the boundary conditiorj20]. . . .
. re ! b : xpen Second, the model of Ref9] relies on linear viscoelas-

that the Maxwell model corrected by a Zimm-like term pro- ticity. Indeed. si the instabilit f . t
vides a good description of.. Again, these findings are ICity. Indeed, since the Insta ||“y OCCl,‘,'rS rom a guiescen
state, strain is expected to be “small.” Experimentally, the

smallest detectable surface deformation/is 10 um. The
corresponding strain rat¢ may be estimated by~ {wk
=10 s at f=60 Hz[9]. Since the zero-shear viscosity of
our fluid is 7,=Gy7=7 Pasy=10 s corresponds to a
shear stress of about 70 Pa, which is far into tloalinear
regime Thus, the only knowledge of the linear viscoelastic
moduli G" andG” may not be sufficient to fully account for
the experiments and nonlinear effects could provide an ex-
planation for the observed discrepancies.

More precisely, wormlike micelles are known to align un-
der shear, leading to a shear-induced nematic ktafeThis
strongly shear-thinningisotropic-to-nematic transition oc-
curs for y=0.5-50 s* depending on temperature and con-
centration[15]. In a Faraday wave pattern, shear is localized
between the crests and the troughs. Thus, above onset,
aligned micelles are expected to coexist with the isotropic
9 state and to spatially mimic the surface pattern. Finally, since

the destabilized state is far from a pure shear flow, one may

FIG. 4. (a) Critical acceleratiora, and(b) critical wave number ~ also wonder about the influence of nonlineatensionathe-

k. vs fluid height measured at 50 HEZJ) and at 70 Hz(®). The ology.
solid lines correspond to the Maxwell model with an added Zimm-  To conclude, the present study reveals a strong signature
like term (see text of elasticity on the onset of the Faraday instability in a

a very good fit of bothG’'(w) and G"(w) is obtained with
a;=0.12 Pa 4° (see solid lines in Fig. 2
Using Eq.(1) in the numerical calculations leads to com

5 7
h (mm)
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wormlike micelle solution. This original effect results from very recent experimental findings on vertically vibrated
standing elastic waves in the container height and should bshear-thickening suspensions, where a rich variety of pat-
very general in highly viscoelastic fluids. It shows that, asterns such as holes and fingers was observed after a finite
suggested earligB,9], the characteristic relaxation time of a perturbation was applied to the surfd@d]. Such an unusual

complex fluid may couple to the excitation period and/or 10papayior was linked to the nonlinear rheological properties
memory effects, leading to new temporal and spatial behav.

: : L9 . \ e of the fluid. Our results on wormlike micelles provide an-
iors under vertical vibrations. Linear viscoelasticity allows other example of a striking effect induced by the microstruc-
for a good qualitative agreement with the model of R6f. P 9 y

but we believe that surface rheology and/or nonlinear effect&ré of & complex fluid on a classical instability.
are also significant. This raises new challenges for theory and The authors wish to thank A. Colin, F. Molino, G.

modeling of hydrodynamic instabilities in complex fluids. In . ; .
particular, we point out that the presence of a shear-induceﬁvaﬂez’ andR. Wun_entiurger for fruitful d'SC.USS'OnS. and the
Cellule Instrumentation” of CRPP for technical advice and

isotropic-to-nematic transition could play a major role in the

pattern selection. This last remark has to be related to sonféSign of the experiment.
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